

Overcurrent Protection: Reference Design & Study

Û

COLLEGE OF ENGINEERING

ECE 480 Design Team 5 Kenji Aono Stephen England Ryan Laderach Joshua Myers Facilitator: Dr. Wen Li Sponsor Representative: Mr. Pete Semig

Overview of Project

- What is over-current protection?
 - Traditional methods
 - Advantages

Introduction

- Design two separate overcurrent protection systems
 - Application 1: Tablet PC emergency system shutdown
 - Application 2: Cell phone power monitoring system
- Use current sensing components from Texas
 Instruments
- Complete PCB design study cases
 - Demonstrate how undesired PCB traces adversely affect current sensing accuracy

Design Specifications

- Application 1
 - Assume 3.6 V, 6.75 A-hr Li-Ion battery
 - Shutdown at 1 A
 - Priorities
 - 1. Small size
 - 2. Low cost
 - 3. Low power consumption
 - 4. Fast speed of shutoff

Application 1 Design

Application 1 Results

Switches off at 2.5 V

Speed: 750 µs (SN74LS74)

SN74LS74	.97in X .75in	7.58mA	27.288mW
SN74AUP1G80	1.01in X .529in	3.83mA	13.788mW

Application 1 Alternative Design

Alternative Application 1 Results Speed: 125 µs

MSP430 Mode	Current Draw	Power Consumption	
Sleep	4.8μΑ	17.28μW	
Active	80.2µA	288.72μW	

Design Specifications

- Application 2
 - Well regulated 3V supply voltage
 - Variable load: 2.7V-3.3V
 - Accurate between 7mA-192.5mA
 - Priorities
 - 1. Minimal system impact
 - 2. Small size
 - 3. High accuracy

Final Design & Results Application 2 Software Results

Final Design & Results Application 2 Demonstration

Design Challenges & Recommendations

- Printed Circuit Boards (PCBs)
 - Necessary for testing all design iterations
 - Professional fabrication methods are high cost and provide slow turnaround
 - Requires a quick, cheap method
 - CNC milling provided by ECE department ineffective for our designs

PCB Design and Fabrication

- EAGLE software used for PCB design
- A method of chemical etching was created
 - Performed on campus in the Engineering Research Complex
 - Higher resolution than CNC milling
 - Quick turnaround
 - Low cost

PCB Design Study Results

- Four cases tested
 - Ideal trace
 - Long distance traces
 - Non-symmetrical traces
 - Non-Kelvin connection traces

PCB Design Study Results

Case	Current	Expected output	Output	%Error
Ideal	118.92mA	297.3mV	323.5mV	8.81%
Long	111.42mA	278.55mV	493.89mV	77.31%
Non-symmetrical	100.24mA	250.56mV	273.77mV	9.57%
Non-Kelvin	99.513mA	248.78mV	325.24mV	30.77%

*Results with 30Ω load (100mA current draw)

Conclusions

- Application One
 - Low cost
 - Reasonably fast shutoff speed
 - Accurate
 - Minimal size with given resources
- Application Two
 - Precise
 - Small size
 - Minimal impact

Future Suggestions

- Use MSP430 for application one
- Solve soldering issues of MSP430 and other small components
- Higher budget

Questions