Design Team 5 Over-current Protection Reference Design and Study

Facilitator: Dr. Wen Li Sponsor: Mr. Peter Semig Stephen England Joshua Myers Kenji Aono Ryan Laderach

Introduction

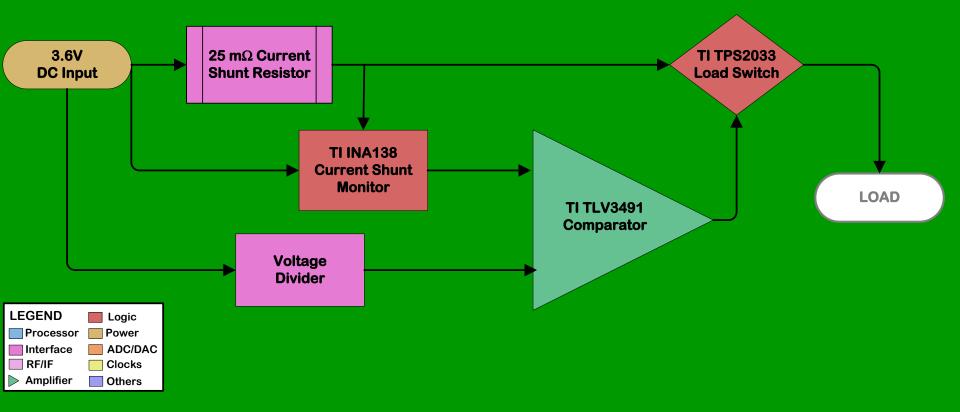
- What is over-current protection?

 Traditional methods
 Advantages

 Application 1:

 Tablet PC over-current protection

 Application 2:
- Application 2:
 - Cell phone current display


Current Sensing

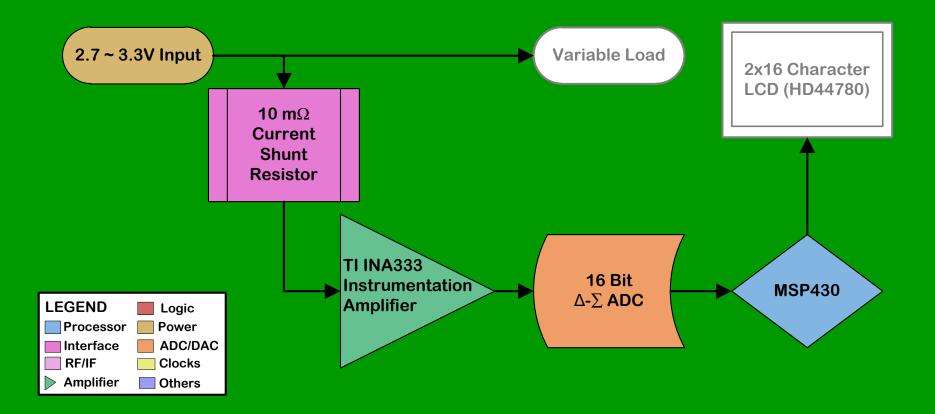
- Types of current sensing
 MOSFET
 - Hall-Effect
 - Current transformer
 - Current shunt monitor

Tablet PC over-current protection

- Purpose: Design a tablet-PC OCP system that switches off power to the load.
 - Trip at 1A of Current
 - Battery Specifications: Li-Ion 3.6V, 6.75A-hr
 - Priorities:
 - Small Size
 - Low Power
 - Fast Speed of Shutoff
 - Low Cost

Block Diagram

Part Justification


 TI INA138 Current Shunt Monitor – Variable Gain Possible Issue: High Input Offset Voltage TI TLV3491 Comparator - Fast Switching Speed (6µs) Low Power Consumption TI TPS2033 Power Switch – Rated at 2A - High Enabled

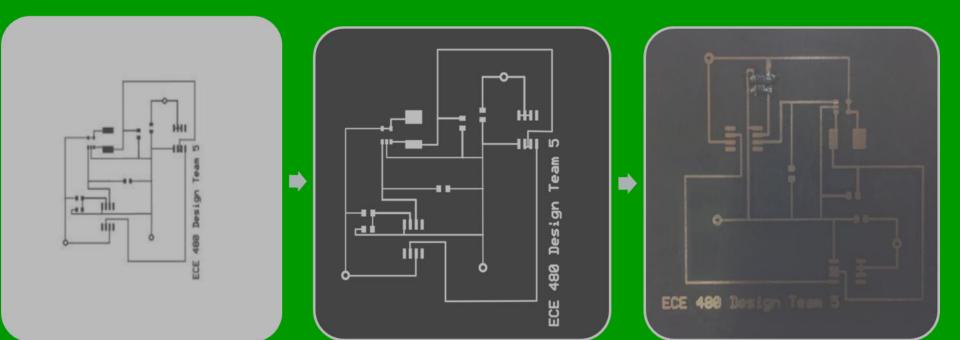
Cell Phone Current Display

- Monitors current

 No shutdown circuitry
 Low levels 7~120mA
- Display measurements
- Voltage source 2.7~3.3V

Block Diagram

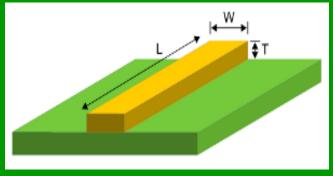
Texas Instruments MSP430


- Ultra low power
 - $-220 \ \mu\text{A/MIPS}$
 - 300 nA Standby
- High bit resolution ADC
- Easy porting to OMAP
- Programmable in Assembly/C
- Very small footprint

- Why are PCBs so important to this project?
 - Protoboards and other traditional testing equipment add parasitic elements from wires and metal.
 - Current sensing requires high accuracy and precision
 - Avoid added series resistance with shunt resistor (~25mΩ)
- PCBs allow us avoid these issues

 Proper PCB design reduces interference
 Traces provide low resistance connections

- Three Primary PCB Fabrication Methods:
 - CNC Milling
 - -Accurate
 - -Low Resolution (~300 microns)
 - Chemical Etching
 - -Higher resolution (~150 microns)
 - -Inexpensive
 - -Fast
 - Professional Fabrication
 - -Highest Resolution and Accuracy
 - -Expensive
 - -Slow


- Design PCB using Express PCB
- Invert colors and print mask onto transparency
- Expose mask and substrate to UV light
- Wash substrate to remove unwanted mask
- Etch remaining copper to substrate where desired

• Future PCB studies:

- Optimal parts placement
- Trace size (L,W)

•
$$R = \rho \frac{L}{TW}$$

http://www.eeweb.com/toolbox/trace-resistance

- Length increases resistance, width decreases resistance
- Corner angles
- Layers and Vias

